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Chapter 6 
Relationships Within Triangles



6.3  Medians and Altitudes of Triangles
Median: a segment from a vertex to the 
midpoint of the opposite side.



6.3  Medians and Altitudes of Triangles
Centroid: the intersection of all the medians.

Centroid
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6.3  Medians and Altitudes of Triangles
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Theorem

Centroid Theorem
The centroid of a triangle is two-thirds of the 
distance from each vertex to the midpoint of 

the opposite side.

Centroid



6.3  Medians and Altitudes of Triangles
If DC = 21, and XE = 4, 
solve for the length of CX and AE.
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Practice:



Practice:
Find the coordinates 
of the centroid of 
△RST with vertices:

R(2,1)
S(5,8)
T(8,3)
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Altitude (height) of a triangle is the 
perpendicular segment from a vertex to the 
line containing the opposite side.
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6.3  Medians and Altitudes of Triangles
Altitude (height) of a triangle is the 
perpendicular segment from a vertex to the 
line containing the opposite side.



Orthocenter: the intersection of the altitudes of 
a triangle.

Orthocenter
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Orthocenter: the intersection of the altitudes of 
a triangle.

6.3  Medians and Altitudes of Triangles

Locations of orthocenter P:



Practice:
Find the coordinates 
of the orthocenter of 
△XYZ with vertices:

X(−5,−1)
Y(−2,4)
Z(3,−1)
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• The coincident points you should know right 
now … and how to find each of these:

6.3  Medians and Altitudes of Triangles

Circumcenter
Perpendicular


bisectors

Incenter
Angle


bisectors

Centroid
Medians

Orthocenter
Altitudes


